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Abstract

Many existing privacy-preserving techniques for query-

ing distributed databases of sensitive information do not

scale for large databases due to the use of heavyweight

cryptographic techniques. In addition, many of these proto-

cols require several rounds of interactions between the par-

ticipants which may be impractical in wide-area settings.

At the other extreme, a trusted party based approach does

provide scalability but it forces the individual databases to

reveal private information to the central party.

This paper shows how to perform various privacy-

preserving operations in a scalable manner under the

honest-but-curious model. Our system provides the same

level of scalability as a trusted central party based solu-

tion while providing privacy guarantees without the need

for heavyweight cryptography. The key idea is to develop

an alternative system model using a Two-Party Query Com-

putation Model comprising of a randomizer and a comput-

ing engine which do not reveal any information between

themselves. We also show how one can replace the ran-

domizer by a lightweight key-agreement protocol. We for-

mally prove the privacy-preserving properties of our proto-

cols and demonstrate the scalability and practicality of our

system using a real-world implementation.

1 Introduction

Over the past decade, there has been a growing need

for large-scale privacy-preserving systems spanning several

databases distributed over the Internet. One motivating ex-

ample is the nation-wide electronic medical records (EMR)

effort within the US which hopes to integrate the EMR of

patients across a large number of hospitals while mandating

stringent privacy requirements for patient records as speci-

fied in the HIPAA regulations [14].

Over the years, the research community has developed

a wide range of privacy-preserving techniques for answer-

ing different types of queries [3, 4, 13, 23, 24, 27] with-

out revealing information of any individual database which

is irrelevant to the queries1. While many of these tech-

niques offer strong privacy guarantees, they do not scale

well for large databases and wide-area systems. The under-

lying reasons are three-fold. First, it is well known that to

support privacy-preserving queries across different parties

by generic secure multi-party computations (SMC) of any

function, the function should be represented as a combina-

tional circuit, which means it is impossible to perform arbi-

trary functions with linear communication overhead [18].

Second, other privacy-preserving techniques [23, 24, 27]

which realize secure multi-party computations of some spe-

cific operation also rely on heavyweight cryptographic op-

erations (e.g. zero-knowledge proof of knowledge and ho-

momorphic encryption for each data value) to ensure mali-

cious parties not to deviate from the protocol specification.

Third, many techniques require [23, 24, 27] multiple rounds

of interactions between the individual entities which is im-

practical in wide-area settings. The high wide-area laten-

cies is a fundamental limiting factor that affects the scala-

bility and the query processing time in wide-area distributed

databases as observed in prior work such as Mariposa [31].

SMC protocols, and P2P approaches [13] which leverage

secret sharing techniques, also suffer from the same multi-

round interaction problem.

1.1 Motivation: The RHIO Initiative

In the nationwide EMR effort, the role of a Regional

Health Information Organization (RHIO) is to integrate the

1In this paper, we do not consider protecting the privacy of the query

from the databases, which can be achieved by private information retrieval.



databases of various hospitals in a geographic region in a

privacy-preserving manner. Given the scalability concerns,

many of the RHIOs have resorted to a simple trusted party

based system for implementing electronic medical records.

In the paradigm of trusted third party (TTP) computation

service [5, 22], all data owners provide their data to a TTP

to perform the computation. However, in reality, data own-

ers are mutually distrustful and a TTP based solution is far

from ideal since the trusted party has complete knowledge

of the individual databases.

In our own experiences, our university medical center

leads a large initiative called New York Clinical Informa-

tion Exchange (NYCLIX) [28] to establish a RHIO across

15 leading hospitals within the New York region. While

the primary developers of the RHIO system are well aware

of different privacy-preserving technologies, they chose a

TTP-based approach primarily due to the lack of other scal-

able alternatives. This partly motivated us to investigate the

problem of performing scalable privacy-preserving opera-

tions in a distributed database environment.

1.2 Our Contributions

In this paper, we present a Two-Party Query Computa-

tion model for performing privacy-preserving operations in

a distributed database environment assuming an honest-but-

curious adversarial model. Many of the existing research on

privacy-preserving techniques assume a more powerful ad-

versarial model where nodes may arbitrarily deviate from

the underlying protocol to gain as much advantage as pos-

sible to reveal other parties’ data. As a result, the proposed

protocols against powerful adversaries are often too ineffi-

cient to be used for very large databases. In reality, nodes

that require privacy guarantees are honest (e.g. would not

inject false values into the database) but at most curious

about other nodes’ data. We thus weaken the security re-

quirements for practical efficiency. In this simplified ad-

versarial model, we show that one can perform scalable

privacy-preserving operations. Indeed, any real-world de-

ployment which is willing to make a stronger assumption

that a TTP exists is automatically viable in our model.

We show that our Two-Party Query Computation model

provides the same level of scalability as a trusted party

based system but with strong privacy guarantees. The two-

party model in essence emulates a central party but with two

important modifications. First, all the operations by the two

parties are performed on short encoded data and not on real

data. Second, the central party computational functionality

is split across two entities. While the basic model assumes

that these two parties cannot collude with each other, we

show how to relax that assumption by using a key agree-

ment protocol across the participating entities. We formally

prove the privacy guarantees of our protocol in the random

oracle model [7]. We also demonstrate the scalability of our

techniques using a real-world implementation.

2 Query Computation Models

There has been a wide range of techniques for privacy-

preserving queries in distributed database settings which of-

fer different tradeoffs along the security and functionality

axes. At a high-level, we classify these works into four cat-

egories: (a) Secure Multi-party Computation; (b) Determin-

istic Encryption; (c) Trusted Computing and (d) P2P Model.

Table 1 compares our proposal with these models across six

dimensions: (a) Need for encryption; (b) Need for decryp-

tion; (c) Need for dedicated hardware; (d) Network assump-

tion; (e) Trust assumption and (f) Efficiency. The network

assumption indicates if the solution requires some partic-

ular type of network, some kind of network hierarchy or

information about the network. Similarly, we use the term

trust assumption to indicate whether the security is relied on

the assumption that a certain party is trusted not to misbe-

have. The meaning of misbehavior varies among different

proposals; some proposals use a stronger assumption than

others do. Computational requirements suggest whether en-

cryption and decryption is needed for each record. Most

efficiency comparisons in the table are self-evident. Note

that in the trusted computing approach [3, 26], decryption

is done by the secure co-processor but not the databases. We

elaborate on some of the important related work in detail.

Secure Multi-party Computation. A recent trend to re-

alize secure multi-party computation for specific privacy-

preserving set operations [16, 23] can be viewed as a com-

bination of two main ideas – polynomial representation of

sets [16] and additively homomorphic cryptosystem [29].

Freedman et al. [16] proposed a protocol for two-party

set-intersection. One party constructs a polynomial which

has an irreducible polynomial factor and zeros at all data

values. This polynomial is encrypted by encrypting its co-

efficients using homomorphic encryption. The other party

makes use of these ciphertexts to perform an oblivious eval-

uation of this polynomial function at every data value he

has, with some randomization. These results are sent back

to the first party for decryptions. When decryptions give

a zero, it can be concluded that their data sets intersect.

They also extended their basic protocol for security against

malicious adversaries, assuming a random oracle, but it is

unclear how to extend it for more than two parties under

the same adversary model [23]. Kissner-Song’s multi-party

protocol [23] proceeds by randomly selecting polynomials

of the same degree as the polynomial representing the data

values and encrypting some combinations of these polyno-

mials to other data owners. At last, all parties jointly per-

form a decryption (i.e. all parties’ secret keys are involved)



Computation-Free Assumption-Free Efficiency

Encryption Decryption Any Hardware Any Network No Trust

Multi-party Computation 8 8 3 3 3 Poor

Deterministic Encryption 8 3 3 3 8 Moderate

Trusted Computing 8 8 8 3 3 Moderate

P2P Model 3 3 3 8 8 Good

Our Proposal 3 3 3 3 8 Efficient

Table 1. Properties of related paradigms

to get the final result. The work of Kissner and Song [23] is

not only about intersection but also other set operations.

Recently, Hazay and Lindell [21] proposed a new ap-

proach for privacy-preserving set-intersection. Instead of

oblivious polynomial evaluation, oblivious pseudorandom

function (PRF) evaluation [15] is used. The protocol pro-

ceeds as follow. One party who holds the set X chooses a

secret PRF key k at random which defines a PRF Fk(·).
Both engages in the oblivious PRF evaluation protocol

such that the other party who holds the set Y gets the set

{Fk(y)}y∈Y as the outcome of the protocol (and the first

party learns nothing). Then, the first party locally computes

{Fk(x)}x∈X and sends it to the second party. The second

party can thus deduce the intersection by checking which

elements appeared in both sets. Hazay-Lindell’s protocol is

more efficient than the polynomial based approach [23], but

only provides security against malicious adversaries under a

weaker definition (“one-sided simulatable”). The protocol

can be modified to be fully simulatable against covert ad-

versaries, which basically means a malicious adversary can

cheat, but will be caught with good probability.

Weaknesses. For polynomial evaluation based approach,

since the homomorphic property is crucial, public key en-

cryption should be used. All tuples are needed to construct

the polynomial, which requires a memory space in the or-

der of the magnitude of the database size. To make the

protocol secure against malicious adversaries, general (and

hence inefficient) zero-knowledge proofs [19, 20] or ineffi-

cient cut-and-choose protocols (which run at bit-level) are

needed. Hazay-Lindell’s protocol also utilizes homomor-

phic encryption for oblivious transfer. The protocol requires

|Y | oblivious PRF evaluation, and each of them requires 4ℓ
modular exponentiations, where ℓ is the bit-length of each

element in the set. All these heavyweight operations are

impractical for very large databases in wide-area settings.

Deterministic and Searchable Encryption. The idea of

efficiently searchable encryption (ESE) was introduced re-

cently in [6]. Efficiency here means an untrusted server can

index, retrieve or update the encrypted data on request just

as efficiently as if the data is unencrypted. ESE is a public

key (asymmetric) encryption. Its basic idea is to use a deter-

ministic encryption (with some additional property, refer to

[6] for the technicalities) to encrypt the data, which makes a

given plaintext always will be encrypted to the same cipher-

text. If the ciphertext of distinct messages under a given

public key rarely coincide, indexing the ciphertext is essen-

tially the same as on unencrypted ones.

ESE is proposed for the outsourced database model, but

not for our privacy-preserving operations. However, one

may apply ESE in our scenario if a central party is assumed

to join the databases faithfully based on the encrypted data.

Weaknesses. As noted in [6], a small plaintext space

means offline dictionary attack is possible, one can test if

a ciphertext corresponding to a given plaintext by a pub-

lic key encryption, which can be done by anyone, includ-

ing the central party. This weakness [11] also appears in

some query processing systems over encrypted data [8]. So

the security of ESE is based on an additional assumption

that the plaintext space has high entropy, which is not (nec-

essary) true in equijoin, where only primary keys are en-

crypted.

Commutative Encryption. The idea of using deter-

ministic encryption also appear in prior work in privacy-

preserving operations outside the outsourced database

model (e.g. a protocol between two data owners), with-

out the formal security treatment of the encryption as in

[6]. Agrawal et al. [4] proposed an intersection pro-

tocol for two parties which uses commutative encryption

(Ek2
(Ek1

(m)) = Ek1
(Ek2

(m)) where Ek(m) is the en-

cryption of the message m under the key k). The encryption

scheme is deterministic and is realized by a modular expo-

nentiation. Despite of the use of modular arithmetic, it is a

symmetric encryption scheme. Again, due to the determin-

istic nature, multiple runs of the protocol may leak partial

information about different queries.

Homomorphic Encryption for Addition/Multiplication.

Another special class of encryption is homomorphic pub-

lic key encryption. Consider an encryption function E un-

der a certain public key, additive homomorphism means

E(m1) + E(m2) = E(m1 + m2). Paillier encryption [29]

is a famous example. Homomorphic encryption schemes

enable a simple privacy-preserving protocol for distributed



addition. Different data sources can encrypt their values to

be added under the public key of the one who made the

query (the querier). Addition can be done by adding those

ciphertexts, which can be done without the private key. The

aggregated ciphertext is then sent to the querier. Roughly

speaking, no one learns about the individual value if the in-

dividual ciphertexts are not leaked to the querier.

Weaknesses. The existence of both additive and multi-

plicative homomorphic encryption does not mean that we

can do arbitrary arithmetic operations on the ciphertext. The

first issue is about floating point division, which is not possi-

ble in group arithmetic. More importantly, devising a prac-

tical doubly homomorphic scheme, where one can both add

and multiply ciphertexts, is still an open problem. Never-

theless, Boneh et al. [9] solved a special case of the prob-

lem. Their scheme uses bilinear groups of composite order

to support quadratic multi-variate polynomials, i.e. cipher-

texts can be multiplied once.

Trusted Computing. One recent trend is to use secure

coprocessor (SC) to realize the functionalities provided by

SMC. In the work by Agrawal et al. [3], privacy-preserving

join operation is done with the help of a SC. Semantic-

secure (probabilistic) encryption is done by the database on

the data value. The SC decrypts them and performs the

matching. With the original data recovered, the matching

thus can be based on any arbitrary function other than a sim-

ple equality check or computation of degree-2 polynomials,

in contrast with the many other approaches.

Weaknesses. SC is used to realize the assumption of

faithful computation and the ideal functionalities of com-

puting a function with the inputs and any intermediate val-

ues kept private from anyone. However, from a compu-

tational standpoint, it is much more expensive to imple-

ment cryptographic operations (e.g. decryption) in the SC

in comparison to simple database indexing operations: for

decrypting millions of records, the overall system perfor-

mance will significantly reduce. In addition, the cost of

tamper-proof memory also imposes a practical limitation on

the type of algorithm that can be performed by the SC.

P2P Model. Emekci et al. [13] proposed a hash-based

system which assumes the existence of a peer-to-peer (P2P)

overlay network (e.g. Chord [30]) for computation of query

results. They use a secret sharing protocol between the

nodes to aid in query computation. Using a hashing-based

query computation approach is definitely much less compu-

tationally intensive that other encryption-based approaches.

Weaknesses. However, their system does face certain se-

curity threats and scalability concerns. In a typical P2P net-

work, it is almost certain that the number of online nodes

is smaller than the size of typical cryptographic parameters,

which makes their system exposed to two vulnerabilities.

First, despite the countermeasures suggested in [13], the ad-

versary can freely choose the helper nodes from the P2P

network by being the last one in the protocol for selection.

Second, the probability for false positive is non-negligible

(with respect to the security parameter of the cryptographic

algorithms) since the equation for matching just depends on

the domain size of the node identifier.

From an efficiency standpoint, their protocol does re-

quire several rounds before computing a query output. Also,

to do a single query computation in a P2P model would

also involve shipping large volumes of data multiple times

across the network. In addition, a query computation re-

quires multiple agreement protocols on the coefficients in

polynomial secret sharing among databases, which are ne-

glected in [13] (otherwise the protocol will not be secure,

again due to the small domain size of the coefficients), takes

a significant amount of time. Finally, a P2P network is not

available in many cases. We refer to this as the “network

assumption” in Table 1. In critical applications like queries

on medical data, nodes may not wish to participate in a P2P

network to exchange encoded data streams with other un-

known nodes.

3 Two-Party Query Computation Model

We outline the basic two-party query computation model

in this section and later describe the types of privacy-

preserving protocols that can be supported on top of this

model in Section 4.

Figure 1 illustrates the basic two-party query computa-

tion model comprising of four different entities: the ran-

domizer, the computing engine, the query front end engine

and the individual databases. The two primary query com-

putation entities in the system are the randomizer and the

computing engine. The query front end engine which re-

ceives queries from different users forwards each query to

the randomizer and an encoded version of the query (which

contains the type of the query) to the computing engine

which in turn coordinate with the individual databases to

compute the query result. Our model assumes that all enti-

ties in the system require strong privacy guarantees but act

in an honest but curious manner. In other words, every par-

ticipating entity acts in an “honest” fashion and follows the

protocol specification, but is “curious” to infer the entries of

other participating databases.

Given this model, the basic steps in our query compu-

tation process are illustrated in Figure 1. The randomizer

upon receiving a query, forwards the query to each indi-

vidual database along with a set of randomization param-

eters. The randomizer also provides an essential set of the

derandomization parameters to the query front end (which

the querier may use to encode the query in case the se-

lection predicate is based on a certain computation of the
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Figure 1. Our System Model

distributed data, and should be protected). Every database

independently computes the local query response for the

query and then obfuscates the query response using the

randomization parameters. According to the query type,

the computing engine performs the query computation by

“combining” the individual obfuscated responses from the

individual databases and produces an obfuscated response

to the query. The query front end then makes use of the

derandomization parameters to deobfuscate the query re-

sponse from the computing engine.

We make a simplifying assumption that all the databases

share the same schema which is also known to the querier;

in practice, even if the individual schemas differ, the query

processing engine at the individual databases can convert

their individual results to a common schema.

3.1 Threat Model and Trust Assumptions

Our threat model assumes that all databases (DBs) do

not trust each other and that no information from one set of

data should be learned by another data owner. We also re-

quire that the computing engine cannot learn anything about

the underlying data, the exact query (for examples, the se-

lection conditions are protected but the computing engine

must know the type of the queries to response accordingly)

and its result. We make the following trust assumptions.

1. All DBs are honest but curious.

2. For correctness of the result, the computing engine will

perform the algorithm faithfully.

3. For confidentiality of the intermediate result, the com-

puting engine will not collude with any of DBs. More-

over, there is no communication between the random-

izer and the computing engine.

4. The querier can encrypt to the randomizer, the random-

izer can encrypt to all DBs (as a whole, not necessary

individually), and all DBs can encrypt to the querier.

These can be easily realized if the randomizer, the

DBs, and the querier have authenticated public keys.

5. To avoid replay attack and the correctness of the end

result received by the querier, these ciphertexts should

contain a cryptographic checksum, e.g. by message

authentication code, such that any outsider adversary

cannot inject arbitrary messages to the protocol.

6. The querier is distinct from the computing engine, and

it cannot collude with any of the DBs.2 This can be re-

alized by restricting the access to the querier terminal,

which also conforms to regulations, e.g. HIPAA [14]

requires that access to hardware and software should

be limited to properly authorized individuals.

We acknowledge that the security of our scheme hinges

on the primary requirement that the randomizer and the

computing engine do not communicate. Later in Section 5,

we describe cryptographic ways which will weaken such an

assumption or even remove the need for the randomizer.

3.2 Comparison to Other Two-Party Models

The concept of utilizing two non-colluding parties to

protect the privacy of the database is not entirely new. For

2Such collusion means one DB is allowed to query another DB, which

contradicts our goal that one DB cannot learn any data from another DB.



secure database services which outsource the data manage-

ment to untrusted server while preserving data privacy, Ag-

garwal et al. [1] proposed a two-party storage model. A

data owner partitions the data into two shares according to

the privacy constraint, and stores each share in different un-

trusted storages that cannot communicate with each other.

While both the two-party computation model and two-

party storage model assume two non-colluding parties,

there are differences in how the distributed data is gener-

ated, processed and stored. In our case, the data is gen-

erated by the respective data owner independently, except

that they may share a similar schema (consider our moti-

vating scenario, a patient may visit more than one hospital

and hence has record stored in two databases). The data

is still stored in the owners’ database but may be sent to

the two-party for coordinated processing. In two-party stor-

age model, there is only one logical entity which created the

data, then splits and distributes the data to different database

systems for storage, i.e. the data is not stored with the data

owner. All these shares of data are originated from a single

entity, and their generations are coordinated.

Apart from the difference in who stores the data, who

issues the query and who processes the query results from

different data sources are also different. In our model, the

querier is someone who does not own the database but nev-

ertheless interested and entitled to extract some information

from the distributed database (for examples, department of

health and census bureau). The job of coordinating the re-

sponses from each database is performed by the two-party.

In the two-party storage model, the querier is actually the

data owner (who no longer stores the data), partial query

results are given by the two-party after executed the query

over their databases, and it is the querier who needs to co-

ordinate the response from each database.

When the assumption breaks, says the two parties col-

lude or one breaks into the other, the security implications

of these models are also different. In the two-party storage

model, since the whole database with privacy data can be re-

covered by integrating the two databases, the consequence

may be as disastrous as causing the entire system broken. In

our model, only the privacy related to the query issued dur-

ing the breakdown is affected. For our intersection protocol,

this only enables the adversary to launch an offline dictio-

nary attack, but not a direct exposure of all related data.

3.3 Comparison to Other Computation Models

The primary motivation for the two-party query compu-

tation model is to develop a system that scales as well as the

trusted central party system while providing privacy guaran-

tees as SMC-based approach. In designing our query com-

putation model, we show that it is possible to achieve this

scalability objective if we explicitly assume a weaker adver-

sary model where every database is honest-but-curious.

The underlying reason for the inefficiency of the SMC

protocols is due to the security guarantees – strong secu-

rity inherently comes with high complexities. In reality, we

may be comfortable with some reasonable assumptions and

are willing to sacrifice some theoretical security guarantees.

For instance, the security model for SMC assumes the ad-

versary even knows the private keys of all parties whom

want to protect their data. This is actually desirable since

many kinds of partial information about the private keys

may leak during the execution of the protocol (e.g. the cor-

responding public key, the decryption of ciphertexts using

the private key). However, it also means we cannot leverage

the secrecy of private key to do something more efficient,

e.g. using a pseudorandom function as a source of the ran-

domness for privacy. Besides, we tend to assume that the

private key cannot be recovered from the public key with

“limited” computation power. Indeed, other approaches like

Hazay-Lindell’s protocol [21] and deterministic encryption

can also be seen as attempts to weaken security require-

ments for better efficiency3.

This honest-but-curious assumption holds in many real

world settings especially if the underlying system is devel-

oped and operated under the governance of law. For in-

stance, it is ideal in the RHIO setup where multiple hospi-

tals wish to establish an EMR system between them. In this

case, the hospitals are always “honest” and they would not

randomly inject false data to the databases. Law enforce-

ment agencies and the hospitals can together establish an in-

stitution which manages two different trusted parties to play

the role of randomizer and computing engine. As part of the

initial setup, a policy can be setup to make the two parties

non-communicating with each other. Note that the need for

two non-communicating trusted parties is not essential; in

the absence of a randomizer, one can use key agreement

protocol to play the role of the randomizer (as described in

Section 5). It is also of the interest of the law enforcement

agencies to preserve the privacy of all the databases, which

gives no motivation of collusion with any database. We also

note that our model suits for other deployments which have

been designed using a TTP or a trusted computing base,

simple due to the fact that they are deployed with a stronger

assumption.

The privacy-preserving protocols that we describe based

on this model provide several important benefits in com-

parison to other well-known models. First, we do not need

any heavyweight cryptographic operations in contrast with

SMC-based approaches. Second, unlike the case of SMC

or P2P models, query computation in our model can be per-

formed in a single round in a similar fashion as a trusted

central party based system. Third, the mechanisms do not

3A semantically-secure encryption scheme must be probabilistic [18],

so the conventional semantic security is sacrificed.



need any special hardware such as powerful secure co-

processors in contrast with trusted computing approaches.

Overall, we believe that the two-party computation model is

a practical approach for achieving both strong privacy guar-

antees and scalability at the expense of a weaker honest-but-

curious adversarial model.

4 Privacy-Preserving Operations

We first give a high-level description of our protocol.

The querier initiates the protocol and sends the query in en-

crypted form to the randomizer, which is to be forwarded

to different DBs. This also notifies the randomizer to gen-

erate a random nonce (number used only once) which will

be sent to all DBs. This random nonce is kept secret from

the computing engine (CE), but this nonce may be possibly

sent to the querier. That concludes the preparation phase.

The query processing phase involves both the DBs and

the CE. Each DB, after received the query and the random

nonce from the randomizer, returns an encoded response

(“obfuscated” by the random nonce) to the CE via a secure

channel in which no other DB can learn the data being sent.

The CE then makes use of these responses from different

DBs to compute the query result. Since all values the CE

got are just some encoded data, the CE does not hold the

actual records to appear in the final result. Therefore, after

the first round of processing there will be a second round

where the CE tells each of DBs in the form of bit vectors

indicating what records should appear in the query result.

The DBs then send an encrypted form of all these records

to the CE.

The last phase is the computation phase which is merely

performed by the CE and the querier. After received data

from different DBs, the CE rearranges them according to

the bit vectors, and sends the rearranged data to the querier.

The querier decrypts the encrypted records and gets the final

result. In some cases, this step requires the random nonce

received from the randomizer.

4.1 System Setup

The setup of our system is as follows. First, there is a

secure channel between all the DBs and the querier; in par-

ticular, the DBs can encrypt their data to the querier such

that the computing engine cannot read. Second, there are

secure channels between the computing engine and each of

the DBs, so that the answer from a certain DB cannot be

read by any other DBs.

Now we describe the public system parameters. Let κ be

the security parameter of the whole system, H be a cryp-

tographic hash function (in particular, it should be collision

resistant) taking bit-strings of arbitrary length as input.

For notational convenience, let ν be the maximum bit-

length to represent the value stored in the database to be

processed. This value does not need to be known in advance

for the execution of the protocol.4 In this case, the input

of H is of limited length and H can be defined by H :
{0, 1}ν+ℓ → {0, 1}ρ, where ℓ and ρ are polynomial in κ.

In particular, it can be ℓ = ρ = κ. Also let p be a prime

number such that 2ρ < p < 2ρ+1,

The system parameter is {κ, p, ℓ, ν, ρ,H(·)} with the de-

scription of other cryptographic algorithms to be used (e.g.

encryption for the secure channels). These cryptographic

algorithms also employ the same security parameter κ.

H will be modeled as a random oracle [7] in our security

analysis. In practice, H will be instantiated by off-the-self

hash function like SHA-1 using the ways suggested in [7],

in this case ρ is 160 bits.

We abuse the notation of H a little bit. Let X and Y
be two sets, Yr = Hr(X ) denotes the results of hash-

ing a concatenation of each element in the set X with

the string r, i.e. if X = {x1, x2, · · · , xm}, Yr =
{H(x1||r),H(x2||r), · · · ,H(xm||r)}.

4.2 Intersection and Union

The problem of intersection query processing across

multiple private databases is defined as follows:

Let D = {D1, · · · ,Di, · · · ,Dn} be a set of n
data source, and L1, · · · , Li, · · · , Ln be the lists

containing the confidential primary key for the

records in the respective databases. An intersec-

tion query q = L1 ∩ L2 ∩ · · · ∩ Ln is posed by

the querier T /∈ D. The problem is to obtain the

answer to q with the help of a computing engine

CE /∈ {T} ∪ D, without revealing any additional

information to all entities except T (specifically,

the computing engine CE and all data sources in

D) and by only providing the query result to the

querier T .

For union query, the problem definition is similar but q =
L1 ∪ L2 ∪ · · · ∪ Ln.

Below we describe the protocol to answer the intersec-

tion query, it is easy to see that a similar idea can be used to

answer the union query.

4.2.1 Preparation Phase

1. The querier initiates the protocol by sending an en-

crypted query to the two-party.

2. The randomizer forwards the query to all DBs.

4Of course, an unreasonably large ν may make the addi-

tion/multiplication result overflows, see Section 6.1.



3. The randomizer picks a random ℓ-bit long string r and

sends it to all DBs and the querier via confidential

channels.

4.2.2 Query Processing Phase

1. Each DB Di, i ∈ {1, · · · , n} runs the query to get the

set of the values to be intersected (but not the other

parts of the query result).

2. Each DB rearranges these values in lexicographic or-

der to prevent any possible inference of the orig-

inal set [4]. We call the resulting set V(i) =
{vi,1, · · · , vi,j , · · · }.

3. Each DB maintains a 1-to-1 mapping of the original

order and the lexicographic order.

4. Each DB sends V
′(i)
r = Hr(V

(i)) to the computing

engine via a confidential channel in which no other DB

can learn the data being sent.

4.2.3 Retrieval Phase

1. After received V
′(i)
r , i ∈ {1, · · · , n} from each DB, the

computing engine performs the intersection matching

among them, and sends bit vectors Bi to the i-th DB

denoting which elements from the i-th DB appear in

all other databases.

Formally, write Bi as a series of bits bi,1bi,2 · · · , bi,k =

1 if ∀j ∈ {1, · · · , n},∃k′

1, k
′

2, · · · such that H(vi,k||r)
= H(vj,k′

j
||r).

2. According to the bit vector and the 1-to-1 mapping pre-

vious maintained, each DB then sends an encrypted

form of the required records to the computing engine.

4.2.4 Final Computation Phase

The final phase is simple. The computing engine sends the

final result to the querier after a rearrangement of all these

encrypted records. The querier just decrypts the encrypted

records and gets the final result. Note that the computing

engine does not need to know anything about the query, says

the field being intersected, except the obvious fact that it is

an intersection query.

4.3 Addition and Multiplication

Addition (multiplication) query processing across multi-

ple private databases is defined as follows:

Let D = {D1, · · · ,Di, · · · ,Dn} be a set of

n data source, and L1, · · · , Li, · · · , Ln be the

equal-sized lists containing the confidential nu-

merical values which are the result of a certain

query in the respective databases, in the form of

Li = {vi,1, · · · , vi,j , · · · , vi,m}. An addition (or

a multiplication) query posed by a querier T /∈ D
is to compute the sums

∑n
i=1{vi,1, · · · , vi,m} (or

the products
∏n

i=1{vi,1, · · · , vi,m}) with the help

of a computing engine CE /∈ {T} ∪D. The prob-

lem is to obtain the answer to the query without

revealing any additional information to all entities

except T (specifically, the computing engine CE
and all data sources in D) and by only providing

the query result to the querier T .

Note that we assume the lists from different databases

are of equal sizes, and are all arranged in a order such that

a correct set of values from different databases are aggre-

gated. These assumptions are reasonable, e.g. when the

aggregation operation is done after the intersection query,

and hence the correspondences of values to be aggregated

are known from the previous query.

Traditional approach for privacy-preserving addition and

multiplication uses homomorphic encryption, as described

in Section 2. With the help of the computing engine, we can

do the same job without using public key operation in the

following way. The description here is for addition but it is

trivial to see multiplication can be done in the same way.

4.3.1 Preparation Phase

This is essentially the same as the preparation phase in the

intersection protocol.

1. The querier initiates the protocol by sending an en-

crypted query to the two-party.

2. The randomizer forwards the query to all DBs.

3. The randomizer picks a random ℓ-bit long string r and

sends it to all DBs and the querier via confidential

channels.

4.3.2 Query Processing Phase

1. Each DB Di, i ∈ {1, · · · , n} runs the query to get the

set of the values to be added. Again, this set does not

include any data which is not an operand of addition.

2. For each j ∈ {1, · · · , n}, the i-th DB computes Ri,j =

H (̂i||ĵ||r) where î, ĵ are ν/2-bit representations of i, j
and Ri,j is parsed as an element in Zp. The additions

below are defined as those in modulo-p arithmetic.

3. The i-th DB computes and sends V ′

i,j = Vi,j +Ri,j for

each j to the computing engine via a confidential chan-

nel between the i-th DB and the computing engine.



4.3.3 Final Computation Phase

1. The computing engine computes V ′

j =
∑

i V ′

i,j , and

sends the result to the querier.

2. For each j, the querier computes Vj = V ′

j −∑
i H(i||j||r).

4.4 Selection based on Addition Result

The above description only just suggests how the addi-

tion result can be computed. To make use of the result to

perform query, or in other words, to support queries with

a selection predicate depends on an addition result, we re-

quire the querier to compute and send to the computing en-

gine an “encoded predicate” at the end of the preparation

phase (and do nothing in the final computation phase). For

example, consider a predicate which requires the summa-

tion of two values from two different databases to be 9,

the querier should send U ′

1 = H(1̂||1̂||r) + H(2̂||1̂||r) + 9
mod p to the computing engine after received r. Under our

assumption of “isolated” computing engine, i.e. it would

not be compromised by either the querier or any of the

databases, the bit-string H(1̂||1̂||r) + H(2̂||1̂||r) acts as a

one-time pad and hence the selection criteria is perfectly

protected, which also means the computing engine does not

learn anything extra except the fact that the querier is look-

ing for a value which will be encoded as U ′

1.

Fetching the records passed this encoded predicate, can

be easily done in the manner as described in Section 4.2, i.e.

the computing engine returns a bit vector to the databases to

indicate which record should be passed to the querier.

4.5 Applicability and Discussions of Limitations

With our proposed protocols, we can support a wide

range of queries including selection, equijoin, addition,

multiplication and combinations of them across databases.

For examples, suppose the tables ‘patientFile’ are dis-

tributed across databases (vertical fragmentation), the ta-

ble ‘medHis1’ only exists in DB1 and the table ‘medHis2’

only exists in DB2 (horizontal fragmentation), the following

SQL queries can be supported.

SELECT icd9 FROM patientFile WHERE date

BETWEEN 2009/01/01 AND 2009/12/31

GROUP BY icd9;

SELECT name FROM medHis1 JOIN medHis2

ON medHis1.patientID = medHis2.patientID

WHERE medHis1.visit + medHis2.visit = 9;

4.5.1 Comparison across Databases

While our model supports equality checking in a simple and

efficient manner, it does not naturally support comparison

across databases in general (but local comparison can be

supported, such as the BETWEEN predicate above.) To

see this, note that the computing engine is not supposed

to know any a prior information about the distribution of

the values to be compared. At the same time, the encod-

ing done by the DBs are not coordinated except by the ran-

domizer, this means that the same value should be mapped

to the same or somehow “similar” encoding, otherwise the

computing engine will treat the same values from different

DBs as different. For one-to-one mapping, all DBs should

use the same random factor to encode the same value. On

the other hand, the random factors encoding different val-

ues of the DBs should make the encoded values preserve the

same ordering, unless the computing engine is given “some

knowledge” about the secret random factors (which possi-

bly relies on some nice algebraic structures for correctness

and number-theoretic assumptions for security). The order-

preserving property implies there are some “relationships”

between the random factors used to encode different val-

ues. If the algorithm executed at the DBs side are not mu-

tating across different search queries, the computing engine

can possibly deduce the relationship between two different

values by exploiting the relationship of the random factors,

e.g. a known function of the difference between two values,

which is something more than the fact about which number

is larger, and should not be leaked.

The above heuristic arguments also suggest a few direc-

tions for future research – 1) devise “efficient” public key

cryptographic mechanism, 2) assign dynamic yet somehow

coherent behaviour to the DBs according to the random-

ness, 3) weaken the security guarantee, says allow the leak-

age of some partial information about the data distribution

and 4) weaken the correctness guarantee, says values which

are “closed” to each other are mapped to the same encoding

such that only values differ by more than a certain threshold

can be distinguished.

A large body of work has been devoted to creating so-

lution for comparing among values from different parties

in a private manner, which also shown to us the difficulty

of tackling this problem (e.g. many solutions operate in

bit-level for comparing among only two integers). Among

the paradigms reviewed in Section 2, only SMC and trusted

computing can answer these queries. We remark that there

are specific solutions for comparison queries, says top-k
queries [2, 32]. However, they are inefficient for very large

database and more research is needed before they can be

considered to be practical.

4.5.2 Nested Queries

Another limitation of our protocols is the handling of all

kinds of nested queries without leakage of partial informa-

tion, says executing our first sample query over the result



of our second one (assuming ‘patientID’ is a primary key

which also presents in the relation ‘patientFile’) instead of

merely from ‘patientFile’. Different from the case for a

predicate based on an addition result in Section 4.4, it is not

always possible to enable the querier to help the computing

engine in processing the next step of a nested query, without

revealing unnecessary partial information to the querier.

Similarly, while it is possible to perform nested compu-

tation (instead of a single addition/multiplication) in sev-

eral rounds, partial information will be leaked. However,

complicated formula is not supported by the traditional ap-

proach based on homomorphic encryption either simply due

to the restricted homomorphism of the current schemes.

Finally, both approaches do not naturally support floating

point arithmetic due to the use of cryptographic groups.

5 Removing the Trusted Parties

5.1 Reducing the Trust on the Randomizer

Our solution places trust on the pseudorandomness of the

random number generation at the randomizer. This gives a

target of attack, says one may try to introduce a virus to

make “random number generation” follows a non-uniform

distribution. One possible way to thwart this threat is to em-

ploy a low-cost secure co-processor which is only required

to perform pseudorandom number generation.

5.1.1 Key Agreement Protocol

Yet there are various cryptographic means to solve this

problem. One way is to carry out key agreement protocol

(KA) [10] among the databases. KA gives a random session

key that is only known to the involving parties but no one

else, even there are no previously established confidential

channels among them. The security property of KA fur-

ther guarantees that no collusion of participants can bias its

randomness. The session key established by KA possesses

exactly the properties we expect from the random number

generated by the randomizer. The KA protocol should also

be authenticated to avoid man-in-the-middle attack.

Multi-party (authenticated) KA (also known as confer-

ence key protocols) can be obtained by generalising the

two-party KA protocol. Each party first picks a random

number locally, computes an one-way function of it and ei-

ther sends or broadcasts it to all other parties else. This may

take multiple rounds of communication. But note that this

is not invoked per every database tuple. It also seems nec-

essary since there is no “dealer” that all of these parties can

trust in our model, in contrast with the TTP paradigm.

Indeed, KA is needed once for all instead of per query.

The trick is to generate new random nonces by maintaining

state and using the key established by KA as an initial seed

of an one-way function. More concretely, suppose the ses-

sion key established by a single invocation of KA is K, one

can derive many numbers by H(K),H(H(K)), · · · , which

are all pseudorandom. Indeed, one can use any one-way

function H and extract hardcore bits [17] out of H’s output

to get forward-secure pseudo random number generation –

all the previously output bits remain pseudorandom even if

the current state is exposed [17]. On the down side, this

method requires another multi-party KA protocol invoca-

tion if some databases join or leave the system.

5.1.2 Verifiable Random Function

The use of KA removes the randomizer, there is yet another

cryptographic primitive that can help reducing the trust on

the randomizer. Verifiable random function (VRF), intro-

duced in [25], is a pseudorandom function [17] that pro-

vides a non-interactively verifiable proof for the correctness

of the random output.

The entity responsible for the random number genera-

tion has a pair of private and public keys. It takes a private

key and a certain input value x to produce a pseudorandom

number y and the associated proof π. With the help of pub-

lic key and the proof π, any third party can check whether y
is really the output values corresponding to x produced by

the private key. On the other hand, only the one who has the

private key can calculate the output value y, any party which

only hold the public key and the input value x but without

the corresponding proof cannot compute the output.

Apart from the verifiability, VRF possesses uniqueness

property, which guarantees that it is computationally diffi-

cult to find y1, y2, π1, π2 such that π1 can prove y1 is the

output value corresponding to x while π2 can prove y2 is

the output value corresponding to the same x.

Here we review a simple and efficient construction of

VRF [12]. For a public key PK = gSK where SK ∈R Zp,

the VRF output is y = ê(g, g)1/(x+SK) and the correspond-

ing proof is π = g1/(x+SK). Verification can be done by the

bilinearity of the mapping ê. If both ê(gx ·PK, π) = ê(g, g)
and y = ê(g, π) hold, y is legitimate. As described, both

the proof and the public key are of constant-size so it is

bandwidth-efficient. Furthermore, the secret key involved

can be distributed to multiple parties [12] such that the ran-

domizer will not be the single point of failure.

In our scenario, using VRF in the randomizer means all

DBs can verify the random coin flipping process, without

the fear that the generation follows a non-uniform distribu-

tion. The security is guaranteed as long as the private key

for generating the secret is not leaked.

5.2 Secure Processor for Weaker Assumption

The encoded values from the databases are sent to the

computing engine via confidential channels. The only other



potential vulnerability is in the computing engine itself.

This makes it a target to attack. On the other hand, there

is risk of collusion between the computing engine and the

randomizer.

We can use a secure co-processor to ensure the integrity

of the code resided at the computing engine and the con-

fidentiality of the data resided at the computing engine’s

memory. The requirement for code-integrity in our case

is much less than that in [3], where public key operations

are to be performed by the co-processor. Timing figures

in Section 7 also supports that no expensive operations are

needed.

6 Security Analysis

6.1 Soundness

We first consider the soundness requirement, which

means the end result obtained by the querier is sound with

respect to the query and the records in the databases. We

prove that our protocols are sound, an aspect that is often

neglected (and may go wrong [13], see Section 2).

Definition 1 A system for processing intersection query

across distributed databases is said to be sound if it is of

overwhelming probability that the final result is L1 ∩ L2 ∩
· · · ∩ Ln, nothing more or less.

Since we assume the computing engine performs the

protocol faithfully and the randomizer generates a fresh ran-

dom value each time, our system is sound as long as hash

collision, i.e. ∃v, v′ such that H(v||r) = H(v′||r) but

v 6= v′, does not occur. If there is an adversary break-

ing the soundness property, we find a collision pair (v||r)
and (v′||r) which breaks the collision resistance of the hash

function.

Our basic system can be easily extended to enable the

querier to detect if such a collision occurred with a higher

probability. Instead of a single random nonce, the random-

izer sends two random nonce r and r′ to the databases. The

second one is only used in the final computation phase to

give the querier some clue in collision detection. For the

privacy of vi,j in the case that it is not useful for the querier

(e.g. as an internal primary key value), instead of sending

vi,j in clear, only the hash value H(vi,j ||r
′) is sent. Ig-

noring the negligible probability that collision occurs for

two independent nonces, i.e. H(vi,j ||r) = H(v′||r) and

H(vi,j ||r
′) = H(v′||r′), a difference in the second hash

values indicates a collision has occurred and the record con-

cerned should be dropped from the final result.

For the addition protocol, all Ri,j terms introduced at

first are removed later and thus it is sound as long as the in-

termediate computations do not overflow, which never hap-

pen if the computation are done in a cyclic group. In the rare

case that the final result is a huge number that is larger than

2ρ+1 (or p to be accurate), if the querier had domain-specific

knowledge, the correct value may be inferred. For multipli-

cation, a similar argument also applies. The soundness fol-

lows directly from the fact that multiplicative inverse exists

for any non-zero element in Zp.

6.2 Adversary Model

We consider the following two kinds of adversaries.

1. Databases: An adversary ADB models a coalition of

all but one databases, who aims to break the privacy

of the remaining honest database. ADB is equipped

with the knowledge of the nonce from the randomizer,

which models an “insider” adversary.

2. Computing Engine: An adversary ACE models a curi-

ous computing engine, who aims to break the privacy

of any honest database. This models an “outsider” at-

tack since the nonce from the randomizer is kept secret

from ACE .

We do not consider security against a malicious querier

since it receives nothing about the database from the pro-

tocol other than the query result (recall our assumption

that the querier is authenticated and cannot be any of the

data owner). In particular, the querier does not have ac-

cess of any intermediate values sent from the databases to

the computing engine. On the other hand, we cannot af-

ford a stronger adversary which models a collusion of the

databases with the computing engine. By the correctness of

the protocol, such a collusion can deduce any information

of the honest database.

This separation suggests why our systems achieve pri-

vacy against ADB . For each query, a honest database only

sends out a single message to the computing engine; As

long as the computing engine does not leak this message to

ADB , ADB has completely no idea about anything about

the honest database.

6.3 Privacy Against Computing Engine

The notion of privacy deserves more explanations. Our

formal definition is based on the common security formu-

lation in which the adversary plays a two-phased game

against a challenger. In the first phase, the adversary picks

two elements v∗

0 , v∗

1 of its choice. The challenger provides a

priori knowledge about the distribution of the data to the ad-

versary except the existence of v∗

0 , v∗

1 . In the second phase,

the challenger makes a random decision which of v∗

0 , v∗

1 is

put to a database. The challenger, acts as the databases,

then “interacts” with the adversary, as a computing engine.

The interaction gives the transcripts of communication be-

tween each database and the computing engine computed



according to the protocol specification. After many interac-

tions, the adversary is expected to guess what is the random

decision made by the challenger. Privacy against comput-

ing engine means that the adversary cannot decide whether

v∗

0 or v∗

1 presents in a database better than a wild guessing.

Our formulation models the situation that even the comput-

ing engine has some a priori knowledge about the database,

the thing it is uncertain remains uncertain even after it saw

the transcript of our protocol. We will not allow the ad-

versary to know the existence of v∗

0 , v∗

1 in all databases,

which matches our model that database and the comput-

ing engine will not collude to compromise the privacy of

another database.

Our model does not only equip the adversary with the

knowledge of the data distribution, but actually let it decide

most of the distribution even in an adversarial way. It is

entitled with some power to query the databases too. This

models a “limited collusion” of the computing engine with

some of the databases and the querier. Finally, we empha-

sise that only the adversarial behaviour of computing engine

is formally defined since it is the only kind of adversary that

is (intellectually-)interesting to deal with. It does not mean

that our protocol is insecure against other kinds of adver-

sary including database, randomizer or querier. The attack

mode of ACE is formally defined below.

Definition 2 A system for processing intersection query

across distributed databases is (x, n, κ)-secure against a

curious computing engine if any probabilistic polynomial

time adversary ACE has negligible advantage (in the secu-

rity parameter κ) in winning the following game, where x
is a positive integer smaller than the size of the set of pos-

sible data values to be processed and n is the number of

databases.

Below describes a game played between the adversary

ACE and a challenger C. The set of possible data values to

be processed is represented by {0, 1}ν and the size of this

set is 2ν . In other words, each data value can be uniquely

represented by a ν-bit number. Without loss of generality,

we assume that ACE is interested in breaking the privacy

of the first database D1. The hash function H is modeled

as a random oracle. We grant the adversary a polynomial

number of random oracle accesses. Each time H is queried

to give H(x) for a “new” x that never appears in any of the

previous H queries, a random value from {0, 1}ρ is chosen

and assigned as the value of H(x).

1. (Setup Phase:) ACE picks two elements v∗

0 , v∗

1 ∈
{0, 1}ν .

2. ACE also outputs n vectors of 2ν-bit long

(b1, · · · , bn), where the i-th bit of bj is on if

ACE wants the record indexed by i to appear in the

j-th database. Otherwise, the corresponding record

should not appear. There are two constraints in

choosing the bit vectors:

(a) the v∗

0-th and v∗

1-th bit of all vectors should be 0

(b) the maximum number of bits which are 1 in all

vector is x

3. (Challenge Phase:) The challenger picks a random bit

c. The data value vc is put into database D1, while

the presences of v∗

0 and v∗

1 in other databases are com-

pletely arbitrary, but still kept secret from ACE .

4. The challenger runs our protocol to answer intersec-

tion queries from ACE for all the records across all n
databases, according to the setup requested by ACE

and the random bit chosen by C. To prevent ACE from

winning trivially, it can only issue query which con-

tains either both or none of v∗

0 and v∗

1 .

5. ACE outputs a bit c′.

ACE is considered to be won this game if c′ = c. Its ad-

vantage in winning the game is defined as |Pr[c′ = c]− 1
2 |.

We defined the privacy in terms of a single interaction, but

a simple hybrid argument can show that this definition im-

plies privacy over many sequential instances of the protocol.

6.3.1 Security of Our Intersection/Union Protocol

The privacy guarantee of our proposed protocol for inter-

section is summarized by the theorem below.

Theorem 1 In the random oracle model, the intersection

query protocol is (2ν − 2, n, κ)-secure.

Proof 1 Firstly, we bound the probability for ACE to learn

the random nonce r. Assume ACE made qH queries to the

random oracle H , including those implicitly made by seeing

the communication transcripts of the protocol; in the ran-

dom oracle model, ACE can only learn r by finding a col-

lision among the responses of the random oracle queries it

made. The probability that qH hash values have at least one

collision equals to 1−
∏qH−1

i=1
2ρ

−i
2ρ ≈ 1−exp(−qH(qH−1)

2ρ+1 ).
Since both ρ and qH are polynomial in the security param-

eter κ, this probability is negligible in κ.

We complete the proof by showing that the distribution

of the view of ACE remains the same no matter what the

bit c is. Note that ACE can control the appearances of at

most 2ν − 2 data values. For c = 1, H(v∗

1 ||r) appears

in the transcript sent to ACE . For c = 0, the simulator

implicitly puts v∗

0 into the database by including H(v∗

0 ||r)
in the transcript to ACE . Due to the property of the random

oracle, the distributions of ACE’s view with H(v∗

0 ||r) and

its view with H(v∗

1 ||r) are the same, hence the view of ACE

for c = 0 and c = 1 are simply indistinguishable for a

polynomial time adversary ACE .



Our intersection/union protocol achieves optimal privacy

in our formulation – up to 2ν − 2 records in each of the

databases can be adversarially controlled, where the total

number of possible records is 2ν .

We note that our model does not consider the size of the

intersection, and our protocol does leak it to the comput-

ing engine. A general solution is to have data padding. We

borrow the first bit of the random nonce for this purpose

(which reduces the size of the nonce space by a factor of

two). All real data values existing in the database are ap-

pended with bit 0. Each database can then introduce ran-

dom bogus data by appending bit 1. When the computing

engine returns the bit vector to the databases, each database

identifies the bogus data in the intersection results by this

special bit and returns garbage records accordingly. Finally,

the querier simply discards these garbage records and gets

the final correct result. This method partially hides the size

of the intersection. A lower bound of the size is still leaked.

It is possible to formulate a security model to ensure the

computing engine cannot learn the query from the response

of databases. But this is not our major concern and we omit

this due to page limitation.

6.3.2 Security of Our Addition Protocol

Similar to the game for the privacy of intersection, we want

to ensure the security of our addition protocol even if the

computing engine adversary can adversarially choose the

data values to be added, except one of them. The adver-

sary only knows this special value comes from one of the

two possibilities previously chosen by the adversary itself.

Privacy guarantee comes from the fact that the adversary

cannot decide which of them is the real case better than a

wild guessing.

Definition 3 A system for processing addition query across

distributed databases is said to be (m,n, κ)-secure against

a curious computing engine if any probabilistic polynomial

time adversary ACE has negligible advantage (in the secu-

rity parameter κ) in winning the following game, where n is

the number of databases and each database has m records

to be added.

Without loss of generality, we assume that the set of

possible data values to be added are in the range of R =
[0, 2ν−1] and ACE is interested in breaking the confiden-

tiality of the first element of the database D1.

1. (Setup Phase:) ACE picks two values v∗

0 , v∗

1 from the

range R. ACE also outputs n lists of numerical values

in the form of Li = {vi,1, · · · , vi,j , · · · , vi,m}, where

Li ∈ Rm, for i ∈ {1, · · · , n}. ACE is constrained to

set v1,1 = 0.

2. (Challenge Phase:) The challenger picks a random bit

c and set v1,1 = v∗

c .

3. The challenger runs our protocol to issue an addi-

tion query across all n databases, according to the

setup requested by ACE and the random bit chosen

by C. C then forwards the transcripts of communica-

tion between each database and the computing engine

to ACE .

4. ACE outputs a bit c′.

ACE is considered to be won this game if c′ = c. Its advan-

tage in winning is defined as |Pr[c′ = c] − 1
2 |.

We have the following theorem for the privacy of our

addition protocol.

Theorem 2 In the random oracle model, the addition query

protocol is (m = poly(κ), n, κ)-secure.

Proof 2 The proof is similar to that for the Theorem 1.

The probability for ACE to learn the random nonce r is

bounded by a quantity negligible in κ. Conditioned on the

event that r is not leaked, we are now going to show the

view of ACE remains computationally indistinguishable no

matter what the bit c is. Let 1̂ be the ν/2-bit representation

of the integer 1. Note that H(1̂||1̂||r) does not appear in

anywhere other than V ′

1,1 = V1,1 + H(1̂||1̂||r). Due to the

property of the random oracle, the distribution of V ′

1,1 re-

mains the same no matter V1,1 = v∗

0 or V1,1 = v∗

1 . Hence,

any polynomial time adversary ACE has only negligible ad-

vantage in deciding which is the real case.

7 Evaluation

We implemented a prototype of the proposed privacy-

preserving operations in Java with JCE for cryptographic

operations, without using any native code. We modified

hsqlDB (http://www.hsqldb.org) to implement the

individual database servers. For the choices of crypto-

graphic algorithms, we instantiate the cryptographic hash

function by SHA-1, and use AES for realizing the confi-

dential channels. In our prototype, the secret keys for AES

are pre-established and shared among different entities. For

the choices of parameters, the key-length we used for AES

is 128 bits. SHA-1 produces a hash value that is 160 bits

long, i.e. ρ = 160. The random nonce r is generated as a

1024-bit number using a pseudorandom number generator.

For our experiments, we used 10 distinct Sun-Fire-280R,

each with 900MHz UltraSparcIII CPU and 4 GB RAM,

running on Solaris SunOS 5.10, as database servers. For

the computing engine, we used a Linux machine with dual

3.06GHz Intel Xeon CPU and 2 GB RAM running Red Hat

Linux 3.4.6.3. In our prototype, we deployed the random-

izer and querier on the same machine with dual 3.06GHz



(a) (b) (c)

Figure 2. Timing figures of our intersection protocol: (a) Time for different computations for 5

databases (b) Computation times for 10 databases (c) Computing engine processing time

Intel Xeon CPU and 2 GB RAM running on Red Hat Linux

3.4.6. Because of this simplification, the timing figures

for the addition protocol below omitted the communication

time for transferring the nonce from the randomizer to the

querier. Since, all our protocols require only one round of

communication (other than the actual transfer of the records

depending on the result of the intersection/addition, which

must requires another round of communication for any pro-

tocol that tries to minimize the bandwidth), we ignore wide-

area propagation delays across nodes.

Regarding the data generation method, our dataset is

synthetically generated. The data size (total records in DB)

of each DB is fixed to 100, 000 records with the schema

partially derived from a RHIO setting. Experiments were

repeated 100 times using the same data over which timings

were averaged.

Figures 2(a) and 2(b) illustrate the scalability character-

istics of our intersection protocol. SQL refers to the time

consumed by each DB to answer a SQL query, CE refers to

the time taken in the computation engine, DB refers to the

additional time taken by the agent resided in each DB. We

make the following observations. First, the total running

time is dominated by the response time of a SQL query that

is unavoidable. The time consumed by our agent is only

approximately 1/5 of the total time for 100, 000 records.

This included the time for encoding the query results, a

logical step which is necessary for all privacy-preserving

systems. Second, the running time of the computing en-

gine is insignificant when compared with the other timing

figures. Finally, the relationship of the total running time

and the number of records is roughly linear. These results

show that our system scales even in the face of millions of

records. For the scalability issue related to the number of

databases, increasing the number of DBs only increases the

time required by the computing engine to perform the set

operations, as inferred from Figures 2(a) and 2(b). Further-

more, this is a very small fraction of the total running time

as shown in Figure 2(c). These results came from the fact

that the computational task for each database is parallelized

in our system: this gives us confidence that our system will

scale in wide-area settings.

Figures 3(a) and 3(b) show the experiment results of our

addition protocol in comparison to the Paillier encryption

based protocol (512-bit key), which is the standard prim-

itive being used whenever additive homomorphic property

is expected. Numbers of records in the figures here refer

to the total number of records being processed. For exam-

ple, in the 10 databases cases, 5, 000 records means each

database owns 500 of them and 500 10-record-additions are

done across the databases. Each set of experiments include

executions for 500 to 4, 000 records. The numbers are small

but are large enough to contrast the efficiency of our pro-

posal from the encryption-based approach.

We make the following observations. First, as expected,

the encryption based approaches are much slower than our

protocol. In fact for the encryption-based approach, the in-

crease in the time required changes at a higher rate than the

increase in the number of records. Second, the aggregation

step of encryption-based approach also takes a significant

portion of the total time. Finally, for our proposed proto-

col, increasing the number of DBs only slightly increases

the total time required. All these in essence demonstrate the

scalability of our addition protocol.

8 Conclusions

Distributed database systems such as hospital informa-

tion systems that operate in the real world need to be scal-

able in terms of the number of databases in the system and

the sizes of the individual databases. Despite the abundance

of privacy-preserving techniques that have been proposed

in the research literature, many of the existing implementa-

tions have adopted the simple central party based computa-

tion model for query processing. While this places signifi-

cant trust on the central party and individual entities, and in

essence reveals significant information to the central trusted
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Figure 3. Timing figures of our addition protocol: (a) Time for different computations for 10 databases

(b) Total time comparison for 5 and 10 databases (c) Total time for our proposed protocol

party; this approach has gained acceptance due to its sim-

plicity and scalability. In this paper, we have proposed an

alternative Two-Party Query Computation Model which op-

erates under the honest-but-curious adversarial assumption.

Under this assumption (which is realistic in many real world

settings), we show how one can perform different types of

privacy-preserving queries in a scalable manner while still

not revealing any additional information. The trust assump-

tion can be weakened by cryptographic means. In particu-

lar, it is possible to remove the randomizers from the sys-

tem. We have formulated a security model and formally

proven the security of our schemes. We have built a proto-

type to validate the scalability experimentally and we plan

to build a large-scale privacy-preserving system in the fu-

ture for the specific case of electronic medical records.
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